
J Glob Optim (2008) 42:369–384
DOI 10.1007/s10898-008-9297-7

Efficient interval partitioning for constrained global
optimization

Chandra Sekhar Pedamallu · Linet Özdamar ·
Tibor Csendes · Tamás Vinkó

Received: 7 March 2008 / Accepted: 8 March 2008 / Published online: 27 March 2008
© Springer Science+Business Media, LLC. 2008

Abstract A new efficient interval partitioning approach to solve constrained global
optimization problems is proposed. This involves a new parallel subdivision direction selec-
tion method as well as an adaptive tree search. The latter explores nodes (intervals in variable
domains) using a restricted hybrid depth-first and best-first branching strategy. This hybrid
approach is also used for activating local search to identify feasible stationary points. The
new tree search management technique results in improved performance across standard
solution and computational indicators when compared to previously proposed techniques.
On the other hand, the new parallel subdivision direction selection rule detects infeasible and
suboptimal boxes earlier than existing rules, and this contributes to performance by enabling
earlier reliable deletion of such subintervals from the search space.

Keywords Constrained global optimization · Interval partitioning · Adaptive search tree
management · Subdivision direction selection rules · Parsing

C. S. Pedamallu
School of Mechanical and Aerospace Engineering, Nanyang Technological University,
Singapore, Singapore
e-mail: pes.murali@gmail.com

C. S. Pedamallu
New England Biolabs Inc., 240 County Road, Ipswich, MA, USA

L. Özdamar
Department of Systems Engineering, Yeditepe University, Istanbul, Turkey
e-mail: linetozdamar@lycos.com

T. Csendes (B)
Institute of Informatics, University of Szeged, Szeged, Hungary
e-mail: csendes@inf.u-szeged.hu

T. Vinkó
ESA/ESTEC, Advanced Concepts Team, Noordwijk, The Netherlands
e-mail: Tamas.Vinko@esa.int

123

370 J Glob Optim (2008) 42:369–384

1 Introduction

Many important real world problems can be expressed in terms of a set of nonlinear
constraints that restrict the real domain over which a given performance criterion is opti-
mized, that is, as a Constrained Optimization Problem (COP). A COP is defined by an
objective function, f (x1, . . . , xn) to be maximized over a set of variables, V = x1, . . . , xn ,
within respective intervals: Xi = [Xi , Xi] for xi , i = 1, . . . , n, that are restricted by a set of
constraints represented as

gi (x1, . . . , xn) ≤ 0 i = 1, . . . , k,

hi (x1, . . . , xn) = 0 i = k + 1, . . . , r.

These constraints can be linear and nonlinear equations or inequalities. An optimal solution of
a COP is an element x∗ of the search space X = X1×· · ·× Xn , that meets all the constraints,
and whose objective function value, f (x∗) ∈ f (x) for all other consistent elements x ∈ X .

It is hard to tackle the general non-convex COP, and in general, traditional numeric algo-
rithms cannot guarantee global optimality and completeness in the sense that the solution
found might be only a local optimum. Here, we introduce an Interval Partitioning Algorithm
(IP) that subdivides the continuous domain over which the COP is defined and conducts
reliable assessment of the subdomains (boxes) while searching for the globally optimal solu-
tion. The reliability is meant in the sense that a box that has a potential to contain a global
optimizer point is never discarded. By principle, an interval partitioning method continues to
subdivide a given irrelevant box until either it turns out to be infeasible or suboptimal. Then,
the box is discarded by the feasibility or optimality cut-off tests. Otherwise it becomes a small
enclosure (by nested partitioning) which possibly contains a local stationary point. During the
partitioning process, an increasing number of solution candidates are identified by invoking a
local search procedure in promising boxes. Hence, similar to other interval and non-interval
B&B techniques, a local search procedure is utilized in IP to find x∗ in a given box. Here,
we use Feasible Sequential Quadratic Programming, FSQP, as a local search method that has
convergence guarantee when started from a location nearby a stationary point.

Theoretically, IP has no difficulties in dealing with the COP; however, interval research
on the COP is relatively scarce when compared with bound constrained optimization. An
early reference is that of Robinson who used interval arithmetic to obtain bounds for the
solution of the COP [31]. Hansen and Sengupta [14] first used IP to solve the inequality
COP. A detailed discussion on interval techniques for the general COP with both inequality
and equality constraints is provided in Ratschek and Rokne [29] and Hansen [13], and some
numerical results using these techniques have been published later in [36]. Dallwig et al.
[9] proposed the software GLOPT for solving bound constrained optimization and the COP
and a new reduction technique was suggested. Kearfott presented GlobSol, which is an IP
software that is capable of solving bound constrained optimization problems and the COP
[16]. Markót [20] developed an IP for solving the COP with inequalities where new adaptive
multi-section rules and a new box selection criteria were presented [21].

Our contribution described in Sect. 2 to the generic IP lies in two features: a new adaptive
tree search method that can be used both in non-interval and interval B&B approaches, and
a new subdivision direction selection (branching) rule that can be used in interval methods.
This new branching rule aims at reducing the uncertainty degree in the feasibility regarding
the constraints over a given subdomain as well as the uncertainty in the box’s potential of
containing a global optimizer point. The new techniques are based on symbolic manipula-
tion of the expressions [6,23,24,28]. While in [6,28] nonlinear transformation was applied to

123

J Glob Optim (2008) 42:369–384 371

simplify the objective function, in [23,24] the parsing of the computation tree was introduced
to have a good decision on the subdivision directions.

Our numerical experiments (in Sect. 4) show that the resulting IP is a viable method
for these problems. The results are compared with commercial software such as BARON,
MINOS, and other solvers interfaced with GAMS.

2 Interval partitioning algorithm for the COP

The set of compact intervals is denoted by I. Every interval X ∈ I is also denoted by [X , X],
with the bounds of X = min X and X = max X . For every a ∈ R, the point interval [a, a]
is also denoted by a. The width of an interval X is the real number w(X) = X − X . Given
two real intervals X and Y , X is said to be tighter than Y if w(X) < w(Y).

Elements of I
n are the boxes. Given X1, . . . , Xn ∈ I, the corresponding box X is the

Cartesian product of intervals, X = X1 × · · · × Xn , where X ∈ I
n . A subset of X , Y ⊆ X ,

is a subbox of X . The notion of width is defined as

w(X1 × · · · × Xn) = max
1≤i≤n

w(Xi).

Interval arithmetic operations are set theoretic extensions of the corresponding real oper-
ations [1]. Given x, y ∈ I, and an operation ♦ ∈ {+,−,×,÷}, we have: X♦Y = {x♦y | x ∈
X , y ∈ Y }. Due to properties of monotonicity, these operations can be implemented by real
computations over the bounds of intervals. The associative law and commutativity hold for
these operations, but the distributive law does not hold (only a weaker law is true, subdis-
tributivity).

Interval arithmetic is particularly appropriate to represent inclusion of real quantities. The
range of a real function f over an interval X is denoted by f (X), and it can be computed by
interval extensions.

Definition 1 An inclusion function of a real function f : D f ⊂ Rn → R is a function
F : In → I such that ∀X ∈ I

n, X ∈ D f ⇒ f (X) = { f (x) | x ∈ X} ⊆ F(X).

This inclusion formula is the basis of what is called the fundamental theorem of interval
arithmetic: interval extensions always produce inclusion functions that enclose the range of
the corresponding real function. As a result, suppose that, for instance, you are looking for
a zero of a real function f over a domain D. If the evaluation of an interval extension of
f over D does not contain 0, it means that 0 was not part of the range of f over D. In a
proper computer implementation of interval extension based inclusion functions the outside
rounding must be made to have guaranteed reliability.

The most common interval extension is known as natural extension. This is obtained by
replacing each arithmetic operation and standard function found in the expression of a real
function with an enclosing interval operation. Natural extension functions are inclusion iso-
tone: given a real function f , whose natural extension is denoted by F , and two intervals X
and Y such that X ⊆ Y , the following holds: F(X) ⊆ F(Y). For real operations this prop-
erty follows from their monotonicity. We denote the lower and upper bounds of the function
interval range over a given box Y by F(Y) and F(Y), respectively.

Here, it is assumed that for the studied COP, the natural interval extensions of f , g,
and h over X are defined. Furthermore it is assumed that, F (and similarly, G and H) is
α-convergent over X , that is, there exist c, α > 0 such that w(F(Y))−w(f (Y)) ≤ cw(Y)α

holds for all Y ⊆ X .

123

372 J Glob Optim (2008) 42:369–384

An interval constraint is built from an atomic interval formula (interval function) and
relation symbols, whose semantics are extended to intervals as well. A constraint is defined
by its expression (atomic formula and relation symbol), its variables, and their domains. We
will consider that an interval constraint has interval variables (variables that take interval
values), and that each associated domain is an interval.

The main feature of interval constraints is that if its solution set is empty, it has no solution
over a given box Y then it follows that the solution set of the COP is also empty and the
box Y can be reliably discarded. Suppose the objective function value of a feasible solution
is known as the Current Lower Bound, CLB. Then, similar to infeasible boxes, suboptimal
boxes can be discarded as follows. If the upper bound of the objective function range over
a given box Y is less than CLB, then Y can be discarded since it cannot contain a better
solution than the CLB.

Below we formally provide the conditions when a given box Y can be discarded reli-
ably, based on the ranges of interval constraints and the objective function. In a partitioning
algorithm, each box Y is assessed for its optimality and feasibility status by calculating the
inclusions F , G, and H over the domain of Y .

Definition 2 (Cut off test based on optimality:) If F(Y) < C L B, then the box Y is called a
suboptimal box.

Definition 3 (Cut off test based on feasibility:) If Gi (Y) > 0, or 0 /∈ Hi (Y) for any i , then
box Y is called an infeasible box.

Definition 4 If F(Y) ≤ C L B, and F(Y) ≥ C L B, then Y is called an indeterminate box
with regard to optimality. Such a box holds the potential of containing x∗ if it is not an
infeasible box.

Definition 5 If (Gi (Y) < 0, and Gi (Y) > 0), or (0 ∈ Hi (Y)
= 0) for some i , and other con-
straints are consistent over Y , then Y is called an indeterminate box with regard to feasibility
and it holds the potential of containing x∗ if it is not a suboptimal box.

Definition 6 The degree of uncertainty of an indeterminate box with respect to optimality is
defined as: P F(Y) = F(Y)− C L B.

Definition 7 The degree of uncertainty, PGi (Y) (P Hi (Y)) of an indeterminate inequality
(equality) constraint with regard to feasibility is as: PGi (Y) = Gi (Y), and P Hi (Y) =
Hi (Y)+ |Hi (Y)|.
Definition 8 The total feasibility uncertainty degree of a box, I N F(Y), is the sum of uncer-
tainty degrees of equalities and inequalities that are indeterminate over Y .

The new subdivision direction selection rule (Interval Inference Rule, IIR) targets an
immediate reduction in I N F(Y) and P F(Y) and chooses the respective variables to bisect a
given parent box. The IP described in the following section uses the feasibility and optimality
cut-off tests in discarding boxes and applies the new rule IIR in partitioning boxes.

2.1 Interval partitioning algorithm

IP is an algorithm that subdivides indeterminate boxes to reduce I N F(Y) and P F(Y) by
nested partitioning. The contraction and α-convergence properties enable this. The reduction
in the uncertainty levels of boxes finally lead to their elimination due to suboptimality or
infeasibility while helping IP in ranking the remaining boxes in a better way.

123

J Glob Optim (2008) 42:369–384 373

Algorithm 1 Interval partitioning procedure
1. Step 0. Set the initial box Y = X and the list of indeterminate boxes, B = {Y }.
2. Step 1. If B = ∅, or if the number of function calls or CPU time reaches a given limit, then STOP.

Else, select the first box, Y in B and remove it from the list.
If Y is infeasible or suboptimal, go to Step 1.
If Y is sufficiently small in width, evaluate m, its mid-point, and if it is a feasible improving solution, update
CLB, and go to Step 1.

3. Step 2. Select coordinate directions to partition (Use the subdivision direction selection rule IIR). Set v to
the number of coordinates to subdivide.

4. Step 3. Partition Y into 2v non-overlapping child boxes and add them to B. Go to Step 1.

A box that has no uncertainty with regard to feasibility after nested partitioning still has
uncertainty with regard to optimality unless it is proven that it is suboptimal. The convergence
rate of IP might be slow if we require nested partitioning to reduce a box to a point interval
that is the global optimizer point. Hence, since a box with a high P F(Y) is promising that it
may contain a global optimizer, we use a local search procedure that can identify stationary
points in such boxes.

Usually, IP continues to subdivide available indeterminate and feasible boxes until either
they are all deleted or interval sizes of all variables in existing boxes are less than a given
tolerance. Such boxes may contain a global optimizer point. Termination can also be forced
by limiting the number of function evaluations and/or CPU time. Here, we choose to termi-
nate IP when the number of function calls not counting those of the local search procedure
reaches a given limit or when the CPU time exceeds a maximal allowed value. Algorithm 1
is a generic IP algorithm without calls to local search.

We now describe our new IP that has a flexible stage-wise tree management feature. This
stage-wise search tree applies the best-first box selection rule within a restricted subtree (to
economize memory usage), meanwhile it invokes local search in a set of boxes.

The tree management system in the proposed IP maintains a stage-wise branching scheme
that is conceptually similar to the iterative deepening approach [19]. The iterative deepening
approach explores all nodes generated at a given search tree level (stage) before it starts
assessing the nodes at the next stage. Exploration of boxes at the same stage can be done in
any order, the sweep may start e.g. from best-first box of that stage. On the other hand, in
the proposed adaptive tree management system, a node (parent box) at the current stage is
permitted to grow a subtree forming partial succeeding tree levels and to explore nodes in
this subtree before exhausting the nodes at the current stage.

If a feasible solution (and CLB) is not identified yet, boxes in the subtree are ranked
according to descending I N F(Y) values, otherwise they are ranked in descending order of
F(Y). A box is selected among the children of the same parent according to either box selec-
tion criterion, and the child box is partitioned again continuing to build the same subtree.
This subtree grows until the Total Area Deleted (TAD) by discarding boxes fails to improve
in two consecutive partitioning iterations in this subtree. Such failure triggers a call to local
search where all boxes not previously subject to local search are processed by the procedure
Feasible Sequential Quadratic Programming (FSQP, [38]), after which they are placed back
in the list of pending boxes and exploration is resumed among the nodes at the current stage.
If a feasible solution with a better objective function value is found by FSQP the CLB is
updated and the solution is stored.

The above adaptive tree management scheme maintains two lists of boxes, Bs and Bs+1

that are the lists of boxes to be explored at the current stage s and the next stage s+1, respec-
tively. Initially, the set of indeterminate or feasible boxes in the pending list Bs consists only

123

374 J Glob Optim (2008) 42:369–384

Algorithm 2 Interval partitioning with adaptive tree management
1. Step 0. Set tree stage, s = 1. Set future stage, r = 1. Set non-improvement counter for TAD: nc = 0. Set

Bs = {X}, and Bs+1 = ∅.
2. Step 1. If the number of function evaluations or CPU time reaches the given limit, or, both Bs = ∅ and

Bs+1 = ∅, then STOP.
Else, if Bs = ∅ and Bs+1
= ∅, then set s ← s + 1, set r ← s, and continue. Select the first box Y in Bs
and remove it from Bs .
1.1 If Y is infeasible or suboptimal, go to Step 1.
1.2 Else if Y is sufficiently small, evaluate m, its mid-point, and if it is a feasible improving solution, update
CLB, reset nc← 0, and store m. Go to Step 1.

3. Step 2. Select variable(s) to partition (use the subdivision direction selection rule IIR). Set v equal to the
number of variables to partition.

4. Step 3. Partition Y into 2v non-overlapping child boxes. Check TAD, if it improves, then reset nc ← 0,
else set nc← nc + 1.

5. Step 4. Add the 2v boxes to Br .
4.1. If nc > 2, apply FSQP to all (previously unprocessed by FSQP) boxes in Bs and Bs+1, reset nc← 0.
If FSQP is called for the first time in stage s, then set r ← s + 1.
4.2. Go to Step 1.

of X and Bs+1 is empty. As child boxes are added to a selected parent box, they are ordered
according to the current criterion. Boxes in the subtree stemming from the selected parent at
the current stage are explored and partitioned until there is no improvement in TAD in two
consecutive partitioning iterations.

At that point, partitioning of the selected parent box is stopped and all boxes that have
not been processed by local search are sent to the FSQP module and processed to identify
feasible and improving point solutions if FSQP is successful in doing so. It should be noted
that, whether or not FSQP fails to find an improving solution, IP will continue to partition
the box since it passes both cutoff tests as long as it has a potential to contain an improving
solution. Finally, the algorithm encloses potential improving solutions in sufficiently small
boxes if FSQP can identify them. Thus, FSQP acts as a catalyst that occasionally scans larger
boxes to identify improving solutions at the earlier stages of the search. From that moment,
child boxes generated from any other selected parent in Bs are stored in Bs+1 irrespective of
further calls to FSQP in the current stage. When all boxes in Bs have been assessed (discarded
or partitioned), the search moves to the next stage, s+ 1, starting to explore the boxes stored
in Bs+1.

In this manner, less boxes (those in the current stage) are maintained in memory and the
search is allowed to go down to deeper levels within the same stage, increasing the chances
to discard boxes. On the other hand, by enabling the search to also explore boxes horizontally
across at the current stage, it might be possible to find feasible improving solutions faster
by not partitioning parent boxes that are not so promising (because we are able to observe a
larger number of boxes).

The tree continues to grow in this manner taking the list of boxes of the next stage after
the current stage’s list of boxes is exhausted. The algorithm stops either when there are no
boxes remained in Bs and Bs+1 or when there is no improvement in CLB as compared with
the previous stage. The proposed IP algorithm is given in Algorithm 2. The adaptive tree
management system in IP is illustrated in [25].

2.2 A new subdivision direction selection rule for IP

The order in which variable domains are partitioned has an impact on the convergence rate
of IP. In general, variable selection is made according to widest coordinate direction rule or

123

J Glob Optim (2008) 42:369–384 375

largest function rate of change in the box. Here, we develop a new numerical subdivision
direction selection rule, Interval Inference Rule (IIR), to improve IP’s convergence rate by
partitioning in parallel, those variable domains that reduce P F(Y) and I N F(Y) in imme-
diate child boxes. Hence, new boxes are formed with an appropriate partitioning sequence
resulting in decreased uncertainty caused by the overestimation in the indeterminate objective
function range and constraint ranges.

Before IIR is applied, the objective f and each constraint gi and h j are interpreted as
binary trees that represent recursive subexpressions hierarchically. Such binary trees enable
interval propagation over all subexpressions of the constraints and the objective function
[3]. Interval propagation and function trees are used by [15] in improving interval Newton
approach by decomposition and variable expansion, by [34] in automated problem reformu-
lation, by [32] and by [35] where feasibility based range reduction is achieved by tightening
variable bounds.

After interval propagation is carried out over the subexpressions in a binary tree, IIR tra-
verses this tree to label its nodes so as to identify the pair of variables (source variables) that
are most influential on the constraint’s or the objective’s uncertainty degree. The presented
interval subdivision direction selection rule is an alternative of earlier rules as those published
in [4,8,30]. This pair of variables is identified for each constraint and the objective function,
and placed in the pool of variables whose domains will be possibly partitioned in the next
iteration. We make sure that the pool at least contains the source variables for the objective
function and therefore, the number of variables to be bisected in parallel is at least two. The
total pool resulting from the traversal of f , g and h is screened and its size is reduced by
allocating weights to variables and re-assessing them.

Before the labeling process IIR-Tree can be applied on a constraint expression, it has to be
parsed and intervals have to be propagated through all subexpression levels. This is achieved
by calling an interval library at each subexpression level of the binary tree from bottom to
top starting from atomic levels (variables or constants).

A binary tree representing a constraint is built as follows. Leaves of the binary tree are
atomic elements, i.e. they are either variables or constants. All other nodes represent binary
expressions of the form (Left � Right). A binary operator “�” is an arithmetic operator
(·,+,−,÷) having two branches (“Left” and “Right”) that are themselves recursive binary
subtrees. However, mathematical functions such as ln, exp, sin, etc. are unary operators.
For these the argument of the function is always placed in the “Left” branch. For a detailed
example see [24].

When the number of constraints is large, there might be a large set of variables resulting from
the application of IIR-Tree to the objective function and each constraint. Here, we develop
a priority allocation scheme to narrow down the set of variables (selected by IIR-Tree) to be
partitioned in parallel. In this approach, all variable pairs identified by IIR-Tree are merged
into a single set Z . Then, a weight w j is assigned to each variable x j ∈ Z and the average w is
calculated. The final set of variables to be partitioned is composed of the two source variables
of f and all other source variables x j ∈ Z with w j > w belonging to the constraints.

The weight w j is defined as a function of several criteria: PGi (Y) (or P Hi
Y) of constraint

gi (or hi), for which x j is identified as a source variable; the number of times x j exists in the
expression of gi ; and the total number of multiplicative terms in which x j is involved within
gi . Furthermore, the existence of x j in a trigonometric and/or even power subexpression in
gi is included in w j by inserting corresponding flag variables. When a variable x j is a source
variable to more than one constraint, the weight calculated for each such constraint is added
to result in a total weight w j defined as

123

376 J Glob Optim (2008) 42:369–384

∑

i∈I C j

(P F(Y)i/P Hmax + PG(Y)i/PGmax + e ji/e j,max + a ji/a j,max + t j i + p ji)/5

where I C j : set of indeterminate constraints (over Y) where x j is a source variable, T I C :
total set of indeterminate constraints, P Hmax : max

i∈T I C
{P Hi (Y)}, PGmax : max

i∈T I C
{PGi (Y)}, e ji :

number of times x j exists in the constraint number i ∈ I C j , e j,max : max
i∈I Cj
{e ji }, a ji : number

of multiplicative terms x j is involved in constraint i ∈ I Cj , a j,max : max
i∈I C j
{a ji }, t j i : binary

parameter indicating that x j exists in a trigonometric expression in the constraint number
i ∈ I C j , p ji : binary parameter indicating that x j exists in an even power or abs expression
in the constraint number i ∈ I C j .

This weighting method is illustrated on a collection of constraints that consists of 3 con-
straints involving 4 variables. The three constraints are given in Eqs. 1–3 below. Variable
domains are X1 = [−2.0, 4.0], X2 = [0.0, 10.0], X3 = [−2.0, 1.0], and X4 = [−10.0, 0.0].

1− (10x1 + 6x1x2 − 6x3x4) = 0 (1)

6(x1x4)+ 6(x2x3)− 10x3 − 4 = 0 (2)

sin(x1x2) cos(x2
1 − x2)+ (x1x4) = 0 (3)

In Table 1 we provide a summary of symbolic characteristics for each variable in each
constraint. Here T I C is the set of three constraints. The variable weights w j are calculated
using the values of box- and constraint-related parameters given in Table 1. The pairs of
maximum impact variables found are (x1, x2), (x1, x4), and (x1, x4) for the first, second and
third constraints, respectively. The set Z is {x1, x2, x4}. A sample weight calculation for x1

in the first constraint is given as
(600

600 + 2
3 + 1

3 + 0
1 + 0

1

)
/5 = 0.4. The weight calculations

are summarized in Table 2.
Consequently, the pair (x1, x4) is selected for re-partitioning. This results in 3 child boxes

whose total I N F(Y) is indicated by bold face in the Table 3. One child box is found to
be infeasible and discarded. For comparison purpose, we also show the total I N F(Y) for
child boxes that would result from re-partitioning other pairs of variables. It is observed that
I N F(Y) is the least for the pair (x1, x4).

Table 1 Inputs for calculating variable weights

Constraint no. x j e ji a ji p ji t j i [Hi (Y), Hi (Y)] P Hi
Y

Constraint 1 x1 2 1 0 0
x2 1 1 0 0 [−339, 261] 339+ 261 = 600
x3 1 1 0 0
x4 1 1 0 0

Constraint 2 x1 1 1 0 0
x2 1 1 0 0 [−374, 196] 374+ 196 = 570
x3 2 1 0 0
x4 1 1 0 0

Constraint 3 x1 3 3 1 1
x2 2 2 0 1 [−41, 21] 41+ 21 = 62
x3 0 0 0 0
x4 1 1 0 0

123

J Glob Optim (2008) 42:369–384 377

Table 2 A summary of the calculation of weights for source variables

Variable Weight in
constraint no. 1

Weight in
constraint no. 2

Weight in
constraint no. 3

Total variable
weight (w j)

x1 0.4 0.32 0.82 1.54
x2 0.4 0.59 0.42 1.41
x4 0.6 0.59 0.42 1.61

Table 3 Total I N F(Y) of child boxes resulting from partitioning different pairs of variables

Selected variables (x1, x4) (x1, x2) (x1, x3) (x2, x3) (x2, x4) (x3, x4)

Total I N F(Y) of child boxes 2141 3088 2758 3786 3778 3728

3 Theoretical results

The inclusion functions applied are obtained by natural interval extension. Hence the inclu-
sion functions have the usual properties [1,29]: they are zero convergent (limi→∞w(Xi) = 0
implies limi→∞w(F(Xi)) = 0), inclusion isotone, and α-convergent for α = 1. The parsing
is used only to determine the subdivision directions. The decrease in the inclusion function
widths achieved within a single subdivision step will be characterized. Only such argument
intervals are investigated that have positive width component intervals. The multiplication
by the interval [0, 0] is excluded from the forthcoming consideration. We have proven the
following four lemmas in [24].

Lemma 1 Let the operator � at any level k of a binary tree be the m-th power (m is even)
or the absolute value, and let �k = Lk = 0. Further, let Lk+1 < 0. Then, IIR may not able
to identify �k+1.

Lemma 2 Let trig denote any trigonometric function. Define maxtrig and mintrig as the
maximum and the minimum values trig can take during one complete cycle. Further, let the

operator at any level k of a binary tree be � = trig, and maxtrig ∈ [Lk, L
k] ⋃ {−∞,∞}

or mintrig ∈ [Lk, L
k] ⋃ {−∞,∞}. Then, IIR may not be able to identify �k+1.

Lemma 3 Suppose the interval operator at a given level k is � = ‘×’, and Lk+1, Rk+1 < 0,

L
k+1

, R
k+1

> 0 |Lk+1| = R
k+1

, and |Rk+1| = L
k+1

. Then, IIR may not be able to label a
bound in the right or left subtrees at the level k + 1.

Lemma 4 For expressions excluding the ambiguous subexpressions indicated in Lemmas
1–3, IIR identifies the correct couple of bounds at level k+1 that result exactly in �k at level k.

Theorem 1 below states that unless ambiguous subexpressions indicated in Lemmas 1–3 exist
in a constraint expression or in the objective function f , the partitioning of a parent box Y
along a source variable identified by IIR guarantees an immediate reduction in the labeled
bound of gi , hi , or f . Hence, a reduction will happen in the degrees of uncertainty (PGi (Y),
P Hi (Y), or P F(Y)) for at least one immediate child box.

Theorem 1 Suppose that a given constraint gi (x) or hi (x), or an objective function f does
not contain the subexpression types indicated in Lemmas1–3. Assume further that all interval

123

378 J Glob Optim (2008) 42:369–384

components of Y have a positive width and that multiplication by the interval [0, 0] is not
allowed. Let Y be a parent box that is partitioned by at least one source variable identified
by IIR. Then, PGi (St) < PGi (Y), P Hi (St) < P Hi (Y), or P F(St) < P F(Y) for at least
one child St of Y .

Proof Consider the evaluation of Gi (Y), the cases of the other inclusion functions can be
proven similarly. We show that there is an immediate guaranteed reduction in the uncertainty
degrees of three children St , t = 1, . . . , 3, assuming that there are two source variables, xr ,
xm identified by IIR for the box Y and for gi (x). We define S1, S2, S3, and S4 as four subboxes
produced by the parallel bisection along these source variables. We denote the component
intervals belonging to xr , xm and box Y as: Yr = [Y r , Y r] and Ym = [Y m, Y m], respectively.
Variable domains in a given child are denoted by Y S

j , j = 1, 2, . . . , n. Then Y S
j = Y j ,

∀ j
= r, m. In Table 4, The r and m coordinate components of the child domains are listed.
Assume that Y r and Y m was identified as the source bounds most contributing to Gi (Y).

The proof is similar for any other pair of bounds. Below we show that PGi (St) < PGi (Y)

for the children St = S1, S2, and S3, and that PGi (S4) = PGi (Y).
Case S1: obviously S1 ⊆ Y . Then, by inclusion isotonicity, w(Gi (S1)) ≤ w(Gi (Y))) and

Gi (S1) ≤ Gi (Y)). Further, since S1,r
= Y r and S1,m
= Y m , then Gi (S1)
= Gi (Y) due to
the fact that Y r and Y m are the source bounds most contributing to Gi (Y). This is the point
where we utilize the assumptions that all interval components have a positive width and that
multiplication by the interval [0, 0] is not allowed.

From the above, Gi (S1) < Gi (Y) holds as strict inequality which leads to PGi (S1) <

PGi (Y). One can show by similar reasoning that PGi (S2) < PGi (Y) and PGi (S3) <

PGi (Y). However, PGi (S4) = PGi (Y), because S4,r = Y r and S4,m = Y m .
The above reasoning is applicable to all bound combinations of contributing source bounds

not only for the (Sr , Sm) pair. In each case, three of the children result in reduced PGi (St)

values. When only one source variable is partitioned, the Y r and Y m are the most contributing
source bounds to Gi (Y) and two children boxes are obtained, then S1 is guaranteed to have
reduced PGi value compared to that of Y . ��

Based on Theorem 1, we now describe supporting rules that are applied by IIR in case
labeling ambiguities described in the Lemmas are in the expressions. For subexpressions of
the type indicated in Lemma 1 at level k of a binary tree (with �k = Lk = 0 and with such
an interval bound at level k + 1, that Lk+1 < 0) set the bound labeling rule to be applied by
IIR at level k+1 such that �k+1 = Lk+1. That is, Lk+1 is targeted, and hence this ambiguity
will be reduced as Theorem 1 proves for other targets. As a consequence, this rule indirectly
supports IIR’s reduction of I N F(Y) or P F(Y).

Assume now that there exist a trigonometric type subexpression at level k of a binary tree

with maxtrig ∈ [Lk, L
k] or mintrig ∈ [Lk, L

k]. Set the bound labeling rule to be applied

by IIR at level k + 1 such that �k+1 = max {|Lk+1|, |Lk+1|}. The ambiguity at level k

Table 4 Component intervals
Y S

r and Y S
m for the subboxes

discussed in the proof of
Theorem 1

Subbox Y S
r Y S

m

S1 [Y r , Y r + w(Yr)/2] [Y m , Y m + w(Ym)/2]
S2 [Y r + w(Yr)/2, Y r] [Y m , Y m + w(Ym)/2]
S3 [Y r , Y r + w(Yr)/2] [Y m + w(Ym)/2, Y m]
S4 [Y r + w(Yr)/2, Y r] [Y m + w(Ym)/2, Y m]

123

J Glob Optim (2008) 42:369–384 379

is resolved more and more in forthcoming partitioning iterations when [Lk, L
k] excludes

maxtrig or mintrig.
For the exceptional case handled in Lemma 3, it is the same which of the two fitting pairs of

bounds is selected, the targeted value can occur only in one of its subintervals. These auxiliary
rules allow us to handle also expressions involving the problematic operations characterized
in Lemmas 1–3. The statements of this section provide only hints that the new direction
selection rules can improve the efficiency of the IP algorithm. An extensive computational
testing can tell more on that.

4 Numerical tests

We have completed some numerical experiments with IP. First, we compare the performance
of different variable selection rules (Rule A, Rule C) from the literature applicable for our
IIR too. We also compare the adaptive tree management approach with two conventional
tree management approaches: worst-first (we aim at discarding boxes as soon as possible)
and depth-first. All three rules and the three tree management techniques are embedded in IP
that uses FSQP. We also compare two box ranking approaches, the one with the swap among
two criteria (maximal infeasibility I N F(Y) and maximal box upper bound on the objective
function F(Y)) and a penalty approach that combines infeasibility with f , namely maximal
upper bound of augmented f .

Thus, we shall measure the effectiveness of the method’s different features on perfor-
mance. In order to have a proper background for comparison, we considered the results of
five solvers that are linked to the commercial software GAMS and a stand-alone one, FSQP
[38] whose code has been provided by AEM (see http://www.aemdesign.com/FSQPmanyobj.
htm). The solvers used in this comparison are BARON 7.0 [32], Conopt 3.0 [10], LGO 1.0
[26], MINOS 5.5 [22], Snopt 5.3.4 [12] and FSQP. We allow every solver to complete its run
without imposing additional stopping criteria except the limit on CPU time.

4.1 Experimental environment

We made our extensive numerical experiments on a set of 60 COP benchmarks, five of them
involving trigonometric functions. Most of these test problems are extracted from the COCO-
NUT benchmark library [5] and that of the Princetonlib [27]. These problems are listed in the
Table 5 with the number of dimensions, number of linear and nonlinear inequalities and equal-
ities. While executing IP, we allow at most 2,000 times (the number of variables + the number
of constraints) function calls carried out in addition to FSQP calls. The number of iterations
allowed for FSQP is limited to 100. We also restrict IP’s run time by 900 s (i.e. by 2.827
Standard Time Units as defined in [33]). One STU is equivalent to 318.369 s on our machine.
All runs were executed on a PC with 256 MB RAM, 1.7 GHz P4 Intel CPU. The IP was coded
in C++ interfaced with the PROFIL interval arithmetic library [18]. In order to illustrate the
impacts of IP’s individual features (the swapping double box ranking criteria, the adaptive
tree search scheme and the branching rule IIR), we compared the following IP variants:

(i) IP with Widest Variable Rule (Rule A [7,8]); IP with Rule C (also called maximum
smear, [7,17]); IP with IIR;

(ii) IP with depth-first tree search approach; IP with the best-first tree search approach
where box ranking is the same as that of adaptive tree approach; IP with adaptive tree
management technique;

123

http://www.aemdesign.com/FSQPmanyobj.htm
http://www.aemdesign.com/FSQPmanyobj.htm

380 J Glob Optim (2008) 42:369–384

Table 5 List of COP benchmarks used in the experiments: problem data and references

Problem D, NE, LE, NIE, LIE Source Problem D, NE, LE, NIE, LIE Source

Aircraftb 18, 5, 5, 0, 0 [5] Hs053 5, 0, 3, 0, 0 [5]
Avgasb 8, 0, 0, 10, 0 [27] Hs056 7, 4, 0, 0, 0 [5]
Alkyl 14, 6, 1, 0, 0 [5] Hs407 5, 3, 0, 0, 0 [5]
Bt4 3, 1, 1, 0, 0 [5] Hs108 9, 0, 0, 12, 0 [5]
Bt8 5, 2, 0, 0, 0 [5] Hs080 5, 3, 0, 0, 0 [5]
Bt12 5, 3, 0, 0, 0 [5] Hs043 4, 0, 0, 3, 0 [5]
Bt11 5, 2, 1, 0, 0 [5] Hs116 13, 0, 0, 10, 5 [5]
Bt7 5, 3, 0, 0, 0 [5] Himmel11 9, 3, 0, 0, 1 [5]
Dispatch 4, 1, 0, 0, 1 [5] Immum 21, 0, 7, 0, 0 [5]
Dipigri 7, 0, 0, 4, 0 [5] Lootsma 3, 0, 0, 2, 0 [5]
Degenlpa 20, 0, 14, 0, 0 [5] Lewispol 6, 6, 3, 0 ,0 [5]
Degenlpb 20, 0, 15, 0, 0 [5] Mwright 5, 3, 0, 0 ,0 [5]
Eigminc 22, 22, 0, 0, 0 [5] Mhw4d 5, 3, 0, 0, 0 [5]
Ex5_2_4 7, 0, 1, 3, 2 [5] Madsen 3, 0, 0, 6 ,0 [5]
Ex9_1_4 10, 4, 5, 0, 0 [5] Minmaxrb 3, 0, 0, 2, 2 [5]
Ex8_4_2 24, 10, 0, 0, 0 [5] Median_scop_vareps 5, 0, 0, 3, 0 [5]
Ex9_2_5 7, 3, 4, 0, 0, 0 [5] Matrix2 6, 0, 0, 2, 0 [5]
Ex14_1_5 6, 0, 4, 2, 0 [5] Mistake 9, 0, 0, 12, 0 [5]
Ex9_2_6 16, 6, 6, 0, 0 [5] O32 5, 0, 0, 6, 0 [5]
Ex9_2_7 10, 4, 5, 0, 0 [5] Pgon 12, 0, 0, 15, 5 [5]
Ex9_1_2 10, 4, 5, 0, 0 [5] Robot 14, 2, 0, 0, 0 [5]
Ex2_1_9 10, 0, 1, 0, 0 [5] Rk23 17, 7, 4, 0, 0 [5]
Ex2_1_3 13, 0, 0, 0, 9 [5] S381 13, 0, 1, 0, 3 [27]
Ex8_4_1 22, 10, 0, 0, 0 [5] S355 8, 5, 0, 0, 0 [27]
Ex8_4_5 15, 11, 0, 0, 0 [5] S336 3, 1, 1, 0, 0 [27]
F_e 7, 0, 0, 3, 4 [11] S262 4, 0, 1, 0, 3 [27]
Fermat_scop_vareps 5, 0, 0, 3, 0 [27] S203 5, 3, 0, 0, 0 [27]
Fp_2_1 6, 0, 0, 1, 1 [11] Springs_nonconvex 32, 0, 0, 10, 0 [27]
Genhs28 10, 0, 8, 0, 0 [5] Steifold 4, 3, 0, 0, 0 [2]
Hs087 11, 4, 2, 0, 0 [5] Sample 4, 0, 0, 2, 0 [27]
Hs108 9, 0, 0, 12, 0 [5] Hs080 5, 3, 0, 0, 0 [5]

Dimension is denoted by D; NE, the number of nonlinear equations; LE, the number of linear equations; NIE,
the nonlinear inequalities; and the number of linear inequalities is LIE

(iii) IP with box ranking according to maximum F(Y) augmented with penalty, (F(Y)−
I N F(Y)2, described in [37]); and IP with the double swapping criteria (max I N F(Y)/

max F(Y)) box ranking approach. We name the proposed double criteria approach also
the no penalty approach.

The first set of IP variants listed above enable us to measure the impact of the branching
rule, IIR against rules established in the interval literature. The second set of variants enable
the comparison of the adaptive tree search management approach against classical tree man-
agement techniques. The third set of variants enable the comparison of the swapping double
criteria box ranking method against the static penalty method. We run all three branching
rules (Rule A, Rule C, and IIR) both with the augmented F(Y) box selection approach and
the proposed swapping criterion approach. All these runs used the three tree management
approaches (depth-first, best-first, and adaptive). However, the depth-first approach does not
require box ranking by default, hence, we have 15 different IP combinations (runs) for each
test problem.

123

J Glob Optim (2008) 42:369–384 381

4.2 Results

We measured the performance of each IP variant on all benchmarks in terms of the following
performance indicators: the average absolute deviation from the global optimum (abbrevi-
ated in the tables as DfO) over all 55 plus 5 benchmarks obtained within the allowed CPU
time limit, the average CPU time in STUs, the average number of tree stages where IP stops
(NoS), the average number of times FSQP is invoked (NoL), the average number of function
calls invoked outside FSQP (NoF), the number of best solutions obtained (NoB) and the
number of problems where a feasible solution could not be obtained (number of unsolved
problems within the CPU time limit, NoU). We provide two summaries of results: one for the
55 non-trigonometrical problems and one for the 5 trigonometric ones. The reason for this
division is that BARON is not able to solve trigonometric models. The numerical results are
provided in Tables 6 and 7 for non-trigonometric and trigonometric problems, respectively.

When we compare the three tree management schemes for IP in Table 6, we observe that
the overall best deviations from the optimum are obtained by IIR-adaptive tree management
scheme under the no penalty box ranking scheme. This observation is also confirmed by the
fact that all three rules in this configuration have the lowest number of problems where IP
did not converge to a feasible solution. The performance of the widest side rule (Rule A) is
close to that of IIR under adaptive tree management scheme in the no penalty box ranking
approach. Rule A performs best only under best-first/no penalty box ranking configuration. In
other configurations Rule A is inferior to IIR. Rule C (maximum smear) is usually the worst
performing rule under all configurations except for the depth-first approach where it is close
to IIR. In summary, best results are obtained by the IIR—adaptive—no penalty and the Rule

Table 6 Summary of results obtained on 55 non-trigonometric COP benchmarks

Method DfO STU NoS NoL NoF NoB NoU

IP adaptive, no penalty IIR 0.55 0.317 4.84 1,502 28,703 44 0
Rule A 0.61 0.341 5.82 1,311 27,542 43 0
Rule C 8.44 0.564 4.17 3,132 28,146 33 6

IP adaptive, penalty IIR 0.92 0.421 4.98 1,382 25,831 41 2
Rule A 2.27 0.458 5.89 1,272 29,824 39 1
Rule C 7.70 0.607 4.32 2,498 27,896 35 5

IP best first, no penalty IIR 1.83 1.656 861 19,402 39 3
Rule A 0.58 1.791 894 22,604 41 2
Rule C 3.87 2.467 985 11,589 30 12

IP best first, penalty IIR 0.79 1.847 854 16,654 38 5
Rule A 2.27 1.928 1,056 19,678 40 1
Rule C 7.31 2.827 982 11,709 31 9

IP depth first IIR 0.79 1.847 854 16,654 38 5
Rule A 2.27 1.928 1,056 19,678 40 1
Rule C 7.31 2.827 982 11,709 31 9

FSQP 5.54 0.000 31 13
Baron 0.43 0.067 45 0
Conopt 14.54 0.000 35 9
LGO 1.90 0.079 40 8
Minos 14.66 0.000 35 9
Snopt 16.36 0.000 34 9

The following abbreviations were used: DfO, average deviation from optimum; STU, average CPU time
needed in STU; NoS, average number of stages; NoL, average number of FSQP calls; NoF, average number
of objective function calls; NoB, number of best solutions; NoU, number of unsolved problems

123

382 J Glob Optim (2008) 42:369–384

Table 7 Summary of results obtained on 5 trigonometric COP benchmarks

Method DfO STU NoS NoL NoF NoB NoU

IP adaptive, no penalty IIR 0.02 0.185 4.00 1, 233 27, 610 4 0
Rule A 0.03 0.286 3.60 1, 476 27, 718 4 0
Rule C 0.00 0.295 3.40 2, 126 27, 684 4 1

IP adaptive, penalty IIR 0.02 0.251 5.40 1, 214 933 4 0
Rule A 0.03 0.269 3.80 1, 330 27, 718 4 0
Rule C 0.00 0.284 3.60 1, 818 27, 684 4 1

IP best first, no penalty IIR 0.05 1.739 880 22, 458 4 0
Rule A 0.03 1.781 800 14, 044 4 0
Rule C 0.00 1.311 876 13, 490 4 1

IP best first, penalty IIR 0.11 1.711 863 21, 506 4 0
Rule A 0.04 1.708 951 16, 173 4 0
Rule C 0.00 2.268 919 10, 337 4 1

IP depth first IIR 0.16 0.041 387 27, 627 4 0
Rule A 0.10 0.032 401 27, 682 4 0
Rule C 0.00 0.128 1, 322 27, 718 4 1

FSQP 1.17 0.000 2 1
Conopt 40.78 0.000 1 0
LGO 2.23 0.003 1 1
Minos 104.14 0.000 0 0
Snopt 38.08 0.000 1 0
The following abbreviations were used: DfO, average deviation from optimum; STU, average CPU time
needed in STU; NoS, average number of stages; NoL, average number of FSQP calls; NoF, average number
of objective function calls; NoB, number of best solutions; NoU, number of unsolved problems

A—best-first—no penalty combinations. However, in terms of the number of best solutions
obtained, and the CPU time, IIR—adaptive—no penalty is better than its competitors.

An advantage of the adaptive tree management scheme is that it reduces CPU times due to
relieved memory requirements and reduced computation times due to a less number of box
sorting operations as compared to the best-first approach. Furthermore, it is effective in send-
ing the correct boxes (intervals that contain feasible solutions) to FSQP that converges to fea-
sible solutions in a less number of iterations as compared to other tree management schemes.
As expected, the best-first approach is the slowest one among all three tree management
schemes (due to maintaining lengthy sorted box lists) and the fastest one is the depth-first.

However, the fastest approach is significantly inferior in solution quality in terms of
unsolved problems, number of best solutions found and average absolute deviation from the
optimum. For the depth-first approach, the performance of Rule C and IIR are not signifi-
cantly different and that of Rule A is quite inferior. A final observation is that the no penalty
box ranking method is generally better than the penalty one in both best-first and adaptive
tree management approaches with respect to the sum of all three partitioning rules’ average
deviations from the global optimum.

When we compare IP solvers to others, we can observe that the two complete solvers
BARON and LGO are best performing. The performance of BARON is better than the
best IP configuration (IIR/adaptive/no penalty) both in terms of average deviation from the
optimum and CPU time. LGO’s performance is somewhat inferior to that of BARON in non-
trigonometric problems. The third best non-IP solver, the stand-alone FSQP, is much worse
than LGO. The difference in performance between FSQP and the best IP configuration that
uses FSQP as a local solver illustrates the strength of it called by a complete solver.

In the results of the trigonometric problems provided in Table 7 show that the relative
performance of different IP configurations is quite similar to our findings in Table 6. The

123

J Glob Optim (2008) 42:369–384 383

zero deviation of Rule C is due to its incapability of solving one problem whereas the other
two rules converge in all test instances. Hence, the given average deviations of other rules are
due to a single problem. Solvers other than IP are significantly inferior on these test problems
as compared to any IP configuration and they do not provide the best solution in more than
2 problems out of five.

Acknowledgements The authors wish to thank Andre Tits (University of Maryland) for providing the source
code of CFSQP, and Hermann Schichl (Universität Wien) for his valuable comments and suggestions, which
improved the paper.

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)
2. Balogh, J., Tóth, B.: Global optimization on Stiefel manifolds: a computational approach.

CEJOR 13, 213–232 (2005)
3. Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(intervals) revisited. In: Proc. of ILPS’94,

pp. 124–138 (1994)
4. Casado, L.G., García, I., Csendes, T.: A new multisection technique in interval methods for global

optimization. Computing 65, 263–269 (2000)
5. COCONUT, http://www.mat.univie.ac.at/~neum/glopt/coconut/
6. Csendes, T., Rapcsák, T.: Nonlinear coordinate transformations for unconstrained optimization. I. Basic

transformations. J. Global Optim. 3, 213–221 (1993)
7. Csendes, T., Ratz, D.: A review of subdivision direction selection in interval methods for global

optimization. ZAMM 76, 319–322 (1996)
8. Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM

J. Numer. Anal. 34, 922–938 (1997)
9. Dallwig, S., Neumaier, A., Schichl, H. : GLOPT—a program for constrained global optimi-

zation. In: Bomze, I.M., Csendes, T., Horst, R., Pardalos, P.M. (eds.) Developments in global
optimization, pp. 19–36. Kluwer, Dordrecht (1997)

10. Drud, A.S.: CONOPT: A System for Large Scale Nonlinear Optimization. Reference Manual for
CONOPT Subroutine Library, ARKI Consulting and Development A/S, Bagsvaerd, Denmark (1996)

11. Epperly, T.G.: Global optimization of nonconvex nonlinear programs using parallel branch and bound.
PhD dissertation, University of Wisconsin-Madison, USA (1995)

12. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained
optimization. Numerical Analysis Report 97-2, Department of Mathematics, University of California,
San Diego, La Jolla, CA (1997)

13. Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)
14. Hansen, E., Sengupta, S.: Global constrained optimization using interval analysis. In: Nickel, K.L. (ed.)

Interval Mathematics, Academic Press, New York (1980)
15. Kearfott, R.B.: Decompostion of arithmetic expressions to improve the behaviour of interval iteration

for nonlinear systems. Computing 47, 169–191 (1991)
16. Kearfott, R.B.: An overview of the GlobSol Package for Verified Global Optimization. Talk given for

the Department of Computing and Software. McMaster University, Ontario, Canada (2003)
17. Kearfott, R.B., Manuel, N. III.: A portable interval Newton/bisection package. ACM Trans. Math.

Software 16, 152–157 (1990)
18. Knüppel, O.: PROFIL/BIAS—a fast interval library. Computing 53, 277–287 (1994)
19. Korf, R.E.: Depth-first iterative deepening: An optimal admissible tree search. Artif. Intell. 27, 97–

109 (1985)
20. Markót, M.C.: Reliable global optimization methods for constrained problems and their application for

solving circle packing problems. PhD dissertation, University of Szeged, Hungary (2003)
21. Markót, M.C., Fernandez, J., Casado, L.G., Csendes, T.: New interval methods for constrained global

optimization. Math. Program. 106, 278–318 (2006)
22. Murtagh, B.A., Saunders, M.A.: MINOS 5.0 User’s Guide. Report SOL 83-20, Department of

Operations Research, Stanford University, USA (1987)
23. Pedamallu, C.S., Özdamar, L., Csendes, T.: An interval partitioning approach for continuous constrained

optimization. In: Models and Algorithms in Global Optimization, pp. 73–96. Springer, Berlin (2006)

123

http://www.mat.univie.ac.at/~neum/glopt/coconut/

384 J Glob Optim (2008) 42:369–384

24. Pedamallu, C.S., Özdamar, L., Csendes, T.: Symbolic interval inference approach for subdivision
direction selection in interval partitioning algorithms. J. Global Optim. 37, 177–194 (2007)

25. Pedamallu, C.S., Pósfai, J., Csendes, T.: Interval partitioning algorithm for constraint satisfaction
problems. Int. J. of Model. Identif. Control. (accepted for publication)

26. Pintér, J.D.: LGO—a program system for continuous and Lipschitz global optimization. In: Bomze,
I.M., Csendes, T., Horst, R., Pardalos, P.M. (eds.) Developments in Global Optimization, pp. 183–
197. Kluwer, Boston (1997)

27. PrincetonLib.: Princeton Library of Nonlinear Programming Models. http://www.gamsworld.org/
performance/princetonlib/princetonlib.htm

28. Rapcsák, T., Csendes, T.: Nonlinear coordinate transformations for unconstrained optimization. II.
Theoretical background. J. Global Optim. 3, 359–375 (1993)

29. Ratschek, H., Rokne, J.: New computer Methods for Global Optimization. Ellis Horwood, Chiches-
ter (1988)

30. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch-and-bound methods
for global optimization. J. Global Optim. 7, 183–207 (1995)

31. Robinson, S.M.: Computable error bounds for nonlinear programming. Math. Program. 5, 235–
242 (1973)

32. Sahinidis, N.V.: Global optimization and constraint satisfaction: the branch-and-reduce approach. In:
Bliek, C., Jermann, C., Neumaier, A. (eds.): COCOS 2002, LNCS, pp. 1–16 vol. 2861 (2003)

33. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Benchmarking global
optimization and constraint satisfaction codes. LNCS 2861, 211–222 (2003)

34. Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch and bound algorithm for the
global optimization of nonconvex MINLP’s. Comp. Chem. Eng. 23, 457–478 (1999)

35. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a
theoretical and computational study. Math. Program. 99, 563–591 (2004)

36. Wolfe, M.A.: An interval algorithm for constrained global optimization. J. Comput. Appl. Math. 50,
605–612 (1994)

37. Yeniay, O.: Penalty function methods for constrained optimization with genetic algorithms. Math.
Comp. Appl. 10, 45–56 (2004)

38. Zhou, J.L., Tits, A.L.: An SQP algorithm for finely discretized continuous minimax problems and other
minimax problems with many objective functions. SIAM J. Optim. 6, 461–487 (1996)

123

http://www.gamsworld.org/performance/princetonlib/princetonlib.htm
http://www.gamsworld.org/performance/princetonlib/princetonlib.htm

	Efficient interval partitioning for constrained global optimization
	Abstract
	1 Introduction
	2 Interval partitioning algorithm for the COP
	2.1 Interval partitioning algorithm
	2.2 A new subdivision direction selection rule for IP

	3 Theoretical results
	4 Numerical tests
	4.1 Experimental environment
	4.2 Results

	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

